× Estatística 1 Estatística 2 Matemática Financeira Logística 1 Administração Financeira Logística 2

open

Matemática Financeira - Aula 11

Aula 11 - Sequências uniformes diferidas e Montante em sequências uniformes

Sequências uniformes diferidas e Montante em Sequências uniformes

Introdução

Diferido (grafada com i) significa adiado ou protelado.

Ocorrem situações em que o comprador só começa a pagar após um período de carência. Iremos analisar esses tipos de situação.

Sequências uniformes diferidas

Dado uma sequência: 0, 1, 2, m, m + 1, m + 2... Onde a primeira parcelo começa a ser paga em m + 1.

Para o cálculo do valor atual (VP) da sequência uniforme diferida, podemos proceder como segue:

  1. Calculamos o valor atual da sequência uniforme na data m (Vm), isto é, um período antes do início da sequência uniforme. Para isso, basta notar que:
\begin{equation} V_m = R [\frac{(1 + i)^n - 1}{(1 + i)^n*i}]\end{equation}
  1. Calculamos o capital VP, que aplicado na data 0 produz um montante igual a Vm na data m. Isto é:
\begin{equation} VP = \frac{V_m}{(1+i)^m}\end{equation}

Exemplos

Um terreno é vendido à vista por R\$ 50.000 ou a prazo em seis prestações mensais iguais, vencendo a primeira três meses após a compra. Se a taxa de juros do financiamento for de 2% a.m., qual o valor de cada prestação?

  • m = 2
  • i = 0,02
  • VP = 50.000
  • R = ?
\begin{equation} VP = \frac{V_m}{(1+i)^m}\end{equation}\begin{equation} 50.000 = \frac{V_2}{(1+0,02)^2} => V_2 = 52.020\end{equation}\begin{equation} V_m = R [\frac{(1 + i)^n - 1}{(1 + i)^n*i}]\end{equation}\begin{equation} V_2 = R [\frac{(1 + 0,02)^6 - 1}{(1 + 0,02)^6*0,02}]\end{equation}\begin{equation} 52.020 = R * 5,601431\end{equation}\begin{equation} R = 9.286,91\end{equation}

Montante em sequências uniformes

Vimos o valor presente de uma sequência uniforme. Veremos agora o valor de seu montante.

Chamamos de montante da sequência, na data n, a soma dos montantes de cada capital R, aplicado desde a data considerada até a data n.

Assim, indicando por M o montante, teremos:

\begin{equation} M = R + R*(1+i)^{1} + R*(1+i)^{2} + ... +R*(1+i)^{t} \end{equation}

Assim, o primeiro termo é R e essa progressão geométrica cresce em (1 + i).

Dado que a fórmula de progressão geométrica é:

\begin{equation} S = \frac{a_1*(q^n - 1)}{q - 1} \end{equation}

Assim:

\begin{equation} M = \frac{R*((1+i)^t - 1)}{1 + i - 1} \end{equation}\begin{equation} M = R[\frac{(1+i)^t - 1}{i}] \end{equation}

Exemplos

Um investidor aplica mensalmente R\$ 2.000,00 em um fundo de investimentos que remunera as aplicações à taxa de juros compostos de 1% a.m. Se o investidor fizer sete aplicações, qual o montante no instante do último depósito?

Temos:

  • R = 2.000
  • i = 1% a.m.
  • t = 7
\begin{equation} M = R[\frac{(1+i)^t - 1}{i}] \end{equation}\begin{equation} M = 2.000[\frac{(1+0,01)^7 - 1}{0,01}] = 14.427,07 \end{equation}

Um executivo, pensando em sua futura aposentadoria, decide fazer 240 depósitos mensais de R\$ 700,00 cada em um fundo que rende 0,4% a.m. (taxa real). Ele objetiva com isso gerar um montante que permita a ele sacar x reais por mês, durante 360 meses até esgotar seu saldo. Obtenha o valor de x supondo que o 1o saque seja feito um mês após o último depósito. Suponha que todos os valores monetários sejam dados em termos reais em relação à data do início dos depósitos.

  • Montante dos depósitos logo após o 240º depósito:
\begin{equation} M = 700[\frac{(1+0,004)^{240} - 1}{0,004}] =281.172,52 \end{equation}
  • O montante acima é o valor atual dos saques que começam um mês depois. Portanto,
\begin{equation} 281.172,52 = R[\frac{(1+0,004)^{360} - 1}{(0,004) ^{360}*0,004}] => R = 1.475,21 \end{equation}

Exercícios

1) Uma pessoa deposita mensalmente, durante sete meses, R\$ 3.500,00 em um fundo que remunera seus depósitos à taxa de 0,9% a.m. Qual o montante logo após o último depósito?

2) Quanto uma pessoa deve depositar mensalmente, durante 15 meses, em um fundo de investimentos que rende 1,8% a.m., para que, logo após o último depósito, tenha um montante de R\$ 60.000,00?

3) Uma empresa deve pagar um título de R\$ 50.000,00 daqui a um ano. Quanto deverá investir mensalmente, a partir de hoje, se os depósitos forem iguais e remunerados a 0,85% a.m., para que, um mês após o último depósito, o saldo seja suficiente para pagar o título?

4) Quanto deverei depositar mensalmente, em um fundo de investimentos que paga 0,8% a.m. de juros, para que, ao final do 18º depósito, tenha um montante de R\$ 2.000.000,00?

5) Um executivo, prevendo a complementação de sua aposentadoria, resolve fazer 180 depósitos mensais de R Reais cada nas datas 1, 2, 3, …, 180, visando a retiradas de R\$ 1.500,00 por mês nas datas 181, 182, …, 420. Obtenha o valor de R, supondo que o dinheiro aplicado renda 0,5% a.m.

6) Suponha que você se aposente aos 70 anos com uma poupança de R\$ 800.000,00 aplicada em um fundo. Quanto você poderá sacar desse fundo e gastar por ano, pelos próximos 25 anos, supondo esses gastos constantes em termos reais? Suponha uma taxa real de 4% a.a. de rendimento do fundo e o primeiro saque um ano após a aposentadoria.

7) Seguindo o exercício anterior. Quanto você deveria aplicar por ano (depósito constante em termos reais) nesse fundo, dos 35 aos 70 anos (36 depósitos), para conseguir uma poupança de R\$ 800.000,00?

8) Um conjunto de sofás é vendido à vista por R\$ 6.000,00 ou a prazo em quatro prestações mensais e iguais, vencendo a primeira três meses após a compra. Qual o valor de cada prestação se a taxa de juros do financiamento for de 2,8% a.m.?

9) A venda de uma moto é anunciada em dez prestações mensais e iguais a R\$ 2.000,00 cada, vencendo a primeira dois meses após a compra. Qual o preço à vista se a taxa de financiamento for de 3,5% a.m.?

10) Um conjunto de som é vendido por R\$ 2.300,00 à vista. A prazo é vendido em seis prestações mensais e iguais, sendo dados ao cliente dois meses de carência, isto é, a primeira prestação só é devida três meses após a compra. A taxa de juros cobrada pela loja é de 2% a.m. Obtenha o valor de cada prestação.

Gabarito

1) R\$ 25.171,51

2) R\$ 3.519,95

3) R\$ 3.941,94

4) R\$ 103.746,14

5) 719,94 reais

6) R\$ 51.209,57

7) R\$ 10.309,50

8) R\$ 1.697,67

9) R\$ 16.070,73

10) R\$ 427,20

In [ ]: